Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16770, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408165

RESUMO

In water scarce regions of South Asia, diversification of rice with maize is being advocated towards sustainability of cereal-based cropping systems. Adoption of innovative agronomic management practices, i.e., conservation agriculture (CA) and sub-surface drip irrigation (SSDI) are considered as key strategies for much needed interventions to address the challenges of water scarcity under projected climate change. Benefits from CA and SSDI concerning water economy are well-established, however, information about their complementarity and water budgeting in cereal-based systems are lacking. A field study was conducted with process-based model (HYDRUS-2D) to understand water transport, root water uptake and components of soil water balance in maize grown in rotation with wheat after five years of continuous adoption of conservation agriculture. In this study, altogether eight treatments comprising of 6 CA+ treatments (CA coupled with SSDI); permanent beds using sub-surface drip (PB-SSD) with (WR) and without (WOR) crop residue at different N rates, 0, 120 and 150 kg N ha-1 were compared with CA (PB using furrow irrigation-FI with crop residue-120 kg N ha-1) and conventional tillage practices (CT) (CT using FI without crop residue-120 kg N ha-1). Results showed that the model could simulate the daily changes in profile soil water content with reasonable accuracy in all the treatments. Simulated soil water balance indicated higher cumulative root water uptake (CRWU), lower cumulative evaporation (CE) and higher soil water retention in CA+ (PB-SSD+ crop residue at 150 and 120 kg N ha-1) than CA and CT plots. Hydrus-2D model efficiency > 0, RMSE between 0.009-0.026 and R2 value between 0.80-0.92 at P < 0.01 indicates that the model is performing efficiently. The mean evaporation from CA+ treatments was 10 and 36% less than CA and CT treatments, respectively. On average, CRWU under CA+ treatments were 14-48% higher than FI treatments. The mean cumulative deep drainage in CA+ plots was 80-100 mm less than CA and CT plots. In CA+ based plots significantly higher biomass production and radiation use efficiency were observed with reduced water use than CA and CT. Therefore, the study justifies the water-saving nature of CA+, while maintaining higher productivity and meeting the transpiration demand of crops and halting unnecessary evaporation and deep drainage losses.

2.
Sci Total Environ ; 788: 147800, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029812

RESUMO

Climate change models predict an increase in rainfall variability, leading to floods and drought events, hence intensifying the need for reservoirs. However, up to 50% of reservoirs' capacity is lost by evaporation, affecting their function of ensuring water availability and stability. Over decades biological, chemical and physical barriers "covers" were developed for inhibiting evaporation. Such barrier's efficiency and applicability are still a matter of discussion, given their economic efficiency, environmental consequences, and operational difficulties are accounted for. In this review, we discussed the efficiency, applicability, and environmental suitability of these covers. Compared to the physical covers, the chemical and biological solutions tend to be less efficient. However, the use of physical covers is multidisciplinary, involving climate, material, and hydrological sciences, and are more efficient. Among the physical covers, the use of suspended covers and free-floating elements decreases evaporation to the tune of 85 and 80.0%, respectively. However, the economic efficiency of free-floating elements remains an open question since all studies overlooked their water footprint (water used in the manufacturing process of these covers), which was found to be very high. The use of these covers decreases heat storage, gas exchange rate, and light availability that could adversely influence dissolved oxygen, water quality, aquatic organisms, and the water ecosystem's function. These ecological consequences have not yet been investigated. The exception is the suspended covers, which have had determinate effects on dissolved oxygen and algae growth. Due to light weight, floating elements' operation is unstable and vulnerable to move due to wind effects. Therefore, such covers must be engineered to increase their stability. Free-floating elements could provide a visible and scalable solution to evaporation suppression when considering their economic visibility, environmental effects, and stability against wind and wave effects under the field conditions. However, these covers can be viable only when water availability is the limiting factor in crop production. We found that studies at reservoir scale are highly limited, therefore, investigations at reservoirs' scale emphasizing ecological aspects, cover stability and cost efficiency, are urgently needed.

3.
Sci Rep ; 11(1): 10386, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001915

RESUMO

Conservation agriculture (CA)-based practices have been promoted and recouped, as they hold the potential to enhance farm profits besides a consistent improvement in soil properties. A 7 years' field experiment consisting of three crop establishment practices viz., zero-till flatbed (ZTFB), permanent beds (PNB), conventional system (CT) along with the three-nutrient management; nutrient expert-based application (NE), recommended fertilization (RDF), and farmers' fertilizer practice (FFP), was carried out from 2013 to 2020. The CA-based practices (ZTFB/PNB) produced 13.9-17.6% greater maize grain-equivalent yield (MGEY) compared to the CT, while NE and RDF had 10.7-20% greater MGEY than the FFP. PNB and ZTFB gave 28.8% and 24% additional net returns than CT, while NE and RDF had 22.8% and 17.4% greater returns, respectively over FFP. PNB and ZTFB had 2.3-4.1% (0.0-0.20 m soil layers) lower bulk density than the CT. Furthermore, microbial biomass carbon (MBC) increased by 8-19% (0.0-0.50 m soil layers) in ZTFB/PNB over the CT, and by 7.6-11.0% in NE/RDF over FFP. Hence, CA-based crop establishment coupled with the NE or RDF could enhance the yields, farm profits, soil properties of the maize-chickpea rotation, thereby, could sustain production in the long run.

4.
Arch Microbiol ; 203(6): 2771-2793, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33884458

RESUMO

Microbial diversity formed by ages of evolution in soils plays an important role in sustainability of crop production by enriching soil and alleviating biotic and abiotic stresses. This diversity is as an essential part of the agro-ecosystems, which is being pushed to edges by pumping agrochemicals and constant soil disturbances. Consequently, efficiency of cropping system has been decreasing, aggravated further by the increased incidence of abiotic stresses due to changes in climatic patterns. Thus, the sustainability of agriculture is at stake. Understanding the microbiota inhabiting phyllosphere, endosphere, spermosphere, rhizosphere, and non-rhizosphere, and its utilization could be a sustainable crop production strategy. This review explores the available information on diversity of beneficial microbes in agricultural ecosystem and synthesizes their commercial uses in agriculture. Microbiota in agro-ecosystem works by nutrient acquisition, enhancing nutrient availability, water uptake, and amelioration of abiotic and abiotic stresses. External application of such beneficial microbiota or microbial consortia helps in boosting plant growth and provides resistance to drought, salinity, heavy metal, high-temperature and radiation stress in various crop plants. These have been instrumental in enhancing tolerance to diseases, insect pest and nematodes in various cropping system. However, studies on the microbiome in revolutionary production systems like conservation agriculture and protected cultivation, which use lesser agrochemicals, are limited and if exploited can provide valuable input in sustainable agriculture production.


Assuntos
Agricultura , Produção Agrícola , Microbiota , Zea mays/crescimento & desenvolvimento , Ecossistema , Microbiologia do Solo
5.
Sci Total Environ ; 664: 659-668, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30763846

RESUMO

A greater energy grant in diesel-fed machinery driven farming substantiate the higher GHGs emission along with improper input (fertilizer, pesticide and irrigation) use and intensive soil management. Practicing conservation tillage, residue retention and diversified crop rotations were advocated because of their multiple benefits. Hence we explored the energy requirement and carbon footprint of conservation agriculture (CA) based maize production systems. Coated N fertilizer [sulphur coated urea (SCU) and neem coated urea (NCU)] were compared with unfertilized and uncoated prilled urea (PU) in the scenario of with and without residue retention on permanent beds (PB) under diversified maize systems [MMuMb, maize-mustard-mungbean and MWMb, maize-wheat-mungbean] in search of a sustainable and energy efficient production system with lesser C-footprint. Results of the 4-year study showed that crops planted on permanent bed with crop residue (PB+R) registered 11.7% increase in system productivity compared to PB without residue (PB-R). N management through Neem coated urea (NCU) recorded 2.3 and 10.9% higher system productivity compared with non-coated prilled urea plot under PB-R and PB+R, respectively. MMuMb was marginally superior than MWMb system in terms of cropping sequence yield, profitability, and energy and carbon use efficiency. Crop residue retention in zero tilled PB increased cost of cultivation by 125 and 147 USD/ha in MMuMb and MWMb systems, respectively. The quantified carbon footprint value was higher in MWMb system. In CA-based practices, crop residues management contributed the highest energy input (61.5-68.4%) followed by fertilizer application (17-20%). Among N management practices, neem coated urea (NCU) significantly improved system productivity and profitability in all the residue applied plots compared to un-fertilized and prilled urea (PU) applied plots. Similarly, higher energy output was also observed in NCU treated plots. However, carbon footprint value was higher in PU (268-285 CO2-e kg/Mg) plots than NCU (259-264 CO2-e kg/Mg) treated plots. Thus, the study supports and recommends that the CA-based MMuMb system with efficient N management through NCU is an environmentally safe, clean and energy efficient one, hence can reduce carbon footprint, will ensure food security and will mitigate climate change.


Assuntos
Agricultura/métodos , Pegada de Carbono , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas , Nitrogênio/análise
6.
Indian J Plant Physiol ; 23(3): 416-425, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416202

RESUMO

Field experiments were conducted to study the effect of irrigation and nitrogen levels on radiation use efficiency (RUE), radiation extinction coefficient (κ) and temporal variation of leaf area index (LAI) and fraction intercepted photosynthetically active radiation (fIPAR). The LAI of wheat increased with increase in irrigation and nitrogen levels. The fIPAR also followed trend similar to LAI. The LAI and fIPAR showed logarithmic relationship with R2 value of 0.92 and 0.93 for the years 2013-2014 and 2014-2015, respectively. The κ value varied between 0.41 and 0.78 and was significantly affected by nitrogen levels but was not influenced by irrigation levels. The grain and above ground biomass (AGB) yields of wheat were not affected significantly by irrigation levels. However, application of 160 kg N ha-1 (N160) registered higher grain (12-33%) and AGB (22-25%) yeilds as compared to that with application of 40 kg N ha-1 (N40). Similar to AGB, the total intercepted photosynthetically active radiation (TIPAR) was not affected by irrigation levels but N160 treatment registered 9-20% higher TIPAR compared to N40 treatment. The linear relationship between TIPAR and AGB revealed that 83-86% variation in AGB yield of wheat can be explained by TIfIPAR. The RUE of wheat under three irrigations (I3) was 6 and 18% higher (P < 0.05) than the five (I5) and two (I2) irrigation treatments, respectively for the year 2013-2014. However, there was no significant effect of irrigation on RUE of wheat in the year 2014-2015. N160 treatment registered 5-13% higher RUE than the N40 treatment. Thus wheat may be grown with three irrigations (CRI, flowering and grain filling) and 160 kg N ha-1 for higher RUE without significant reduction in AGB of wheat compared to five irrigation levels in semi-arid location of Delhi region.

7.
Sci Total Environ ; 640-641: 1382-1392, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30021305

RESUMO

Given the increasing scarcity of production resources such as water, energy and labour coupled with growing climatic risks, maize-based production systems could be potential alternatives to intensive rice-wheat (RW) rotation in western Indo-Gangetic Plains (IGP). Conservation agriculture (CA) in maize systems has been widely promoted for minimizing soil degradation and ensuring sustainability under emerging climate change scenario. Such practices are also believed to provide mitigation co-benefits through reduced GHG emission and increased soil carbon sequestration. However, the combined effects of diversified crop rotations and CA-based management on GHG mitigation potential and other co-benefits are generally over looked and hence warrant greater attention. A field trial was conducted for 5-years to assess the changes in soil organic carbon fractions, mineral-N, N2O emission and global warming potential (GWP) of maize-based production systems under different tillage & crop establishment methods. Four diversified cropping systems i.e. maize-wheat-mungbean (MWMb), maize-chickpea-Sesbania (MCS), maize-mustard-mungbean (MMuMb) and maize-maize-Sesbania (MMS) were factorially combined with three tillage & crop establishment methods i.e. zero tilled permanent beds (PB), zero-tillage flat (ZT) and conventional tillage (CT) in a split-plot design. After 5-years of continued experimentation, we recorded that across the soil depths, SOC content, its pools and mineral-N fractions were greatly affected by tillage & crop establishment methods and cropping systems. ZT and PB increased SOC stock (0-30 cm depth) by 7.22-7.23 Mg C ha-1 whereas CT system increased it only by 0.88 Mg C ha-1as compared to initial value. Several researchers reported that SOC & mineral-N fraction contents in the top 30 cm soil depth are correlated with N2O-N emission. In our study, global warming potential (GWP) under CT system was higher by 18.1 and 17.4%, compared to CA-based ZT and PB, respectively. Among various maize systems, GWP of MMS were higher by 11.2, 6.7 and 6.6%, compared that of MWMb (1212 kg CO2-eq. ha-1), MCS (1274 kg CO2-eq. ha-1) and MMuMb (1275 kg CO2-eq. ha-1), respectively. The results of our study suggest that CA and diversified crop rotations should be promoted in north-western IGP and other similar agro-ecologies across the globe for ensuring food security, restoration of soil health and climate change mitigation, the key sustainable development goals (SDGs).


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Solo/química , Carbono/análise , Produtos Agrícolas , Índia , Minerais , Nitrogênio/análise , Óxido Nitroso/análise , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...